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The generalized thermoelastic problem of a thermo-mechanically loaded beam is studied.
The upper surface of the beam is thermally isolated and subjected to a mechanical load while
the bottom surface is traction free and subjected to a heating source. Based on the heat
conduction equation containing the thermoelastic coupling term and the two-dimensional
elasticity theory, thermoelastic coupling differential equations of motion are established.
The generalized thermoelasticity theory with the dual-phase-laggings (DPLs) model is used
to solve this problem. A closed-form analytical technique is used to calculate vibration of
displacements and temperature. The effects of the phase-laggings (PLs), the intensity of the
applied load and heat parameters on the field quantities of the beam are discussed. The
variation along the axial direction and through-the-thickness distributions of all fields are
investigated. Some comparisons have been also shown graphically to estimate the effects of
the time on all the studied fields.
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Nomenclature

Ce – specific heat per unit mass at constant strain
e – volumetric strain
E – Young’s modulus
K – thermal conductivity
L, h – beam length and thickness, respectively
Q∗ – heat source
q – heat flux vector
T (x, z, t) – temperature distribution
T0 – environmental temperature
u – displacement vector
u,w – axial and transverse displacements
u∗, w∗ – amplitudes of axial and transverse displacements

Greek symbols
α – linear thermal expansion coefficient
δ – unification parameter
εij , σij – strain and stress tensor, respectively
γ – stress-temperature modulus, γ = Eα/(1 − 2ν)
λ∗, µ∗ – Lamé’s constants
ν – Poisson’s ratio
ω – angular frequency
ρ – material density of medium
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σ∗j – stress amplitudes

σ0 – intensity of applied load at upper face surface
τθ, τq – phase-lag of temperature gradient and of heat flux
θ = T − T0 – temperature increment
θ∗ – amplitude of temperature increment
θ0 – intensity of heat source
∂θ/∂z – normal components of heat flux vector

1. Introduction

Many generalized theories of thermoelasticity have been developed in the literature to study
the behavior of thermoelastic structures. These theories can be classified in different models,
such as the theory of coupled thermoelasticity (CTE) (Biot, 1956), the Lord and Shulman (L-S)
theory (Lord and Shulman, 1967), the Green and Lindsay (G-L) theory (Green and Lindsay,
1972), the Green and Naghdi (G-N) theory (Green and Naghdi, 1991, 1992, 1993) as well as the
Tzou (1955a,b, 1006) dual-phase-lag (DPL) thermoelasticity theory (see also Chandrasekharaia
(1998)). To the author’s best knowledge, only a few authors have presented the exact two-
-dimensional solution to the generalized thermoelastic beam problem up to present time. Most
authors used the classical theory for thin beams as well as one of the generalized thermoelasticity
theories.

The investigation of harmonic plane wave propagations in an elastic medium have been at-
tempted by several researchers. Prasad et al. (2010) investigated the propagation of harmonic
plane waves with an assigned frequency by employing the thermoelasticity theory with dual-
-phase-lags. Mukhopadhyay (2004) presented thermoelastic interactions without energy dissipa-
tion in a spherical-cavity medium subjected to harmonically varying temperature. Kobzar’ and
Fil’shtinskii (2008) presented the plane dynamic problem of coupled thermoelasticity takeing
into account the harmonic form of the change of field quantities with time. Allam et al. (2009)
presented the 2-D problem of electromagneto-thermoelasticity for a perfectly conducting thick
plate subjected to a harmonically time-dependent heat source in the context of G-N theory.
Ram et al. (2008) obtained a general solution to the field equations of a harmonically time-
dependent generalized thermodiffusion in an elastic solid. Mukhopadhyay and Kumar (2008)
studied thermoelastic interactions in a spherical-cavity medium subjected to a time-dependent-
heating effect in the context of different thermoelasticity theories. Gue et al. (2012) analyzed
thermoelastic damping of a micro-beam resonator by the dual-phase-lag thermal conduction
model of the generalized thermoelasticity theory. Zenkour and Abouelregal (2014) presented
nonlocal thermoelastic vibrations for variable thermal conductivity nanobeams due to harmoni-
cally varying heat. Recently, Zenkour (2015) presented a three-dimensional thermal shock plate
problem within the framework of different thermoelasticity theories.

The present article is concerned with the two-dimensional transient generalized thermoela-
stic problem for a thick beam subjected to thermal and thermomechanical loads at its faces.
Based on the dual-phase-lags model (Abouelregal and Zenkour, 2014; Abbas and Zenkour, 2014;
Zenkour and Abouelregal, 2015; Zenkour et al., 2013), the exact closed-form solution for the
governing equations is established. The equations of the classical thermoelasticity theory, Lord
and Shulman theory, and Green and Naghdi theory may be established as special cases of the
DPLs theory. All expressions for temperature, displacements and stresses are presented. Nume-
rical results showing the thermoelastic dynamic responses of the field quantities through the
axial and thickness directions of the beam are presented. The effect of the time parameter is
also investigated.
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2. Thermoelastic basic equations

Let us consider a homogenous isotropic thermoelastic solid in the Cartesian coordinate system
Oxyz initially un-deformed and at a uniform temperature T0. The basic governing equations
of motion, balance of the equilibrated force and heat conduction in the context of generalized
(non-Fourier) thermoelasticity for the displacement vector u(x, y, z, t) in the absence of body
forces should be considered.

The modified classical thermoelasticity model is given by the Tzou theory in which the
Fourier law is replaced by an approximation of the equation

q(x, t+ τq) = −K∇T (x, t+ τθ) (2.1)

The above equation may be approximated by

(

1 + τq
∂

∂t

)

q = −K
(

1 + τθ
∂

∂t

)

∇T (2.2)

where 0 < τθ ¬ τq. Then the heat conduction equation corresponding to the dual-phase-lag
model proposed by Tzou in this case takes the form

K
(

1 + τθ
∂

∂t

)

∇2θ +
(

1 + τq
∂

∂t

)

ρQ∗ =
(

δ + τq
∂

∂t

)(

ρCe
∂θ

∂t
+ γT0

∂e

∂t

)

(2.3)

Equation (2.3) describes the coupled dynamical thermoelasticity theory (CTE), the genera-
lized thermoelasticity theories proposed by Lord and Shulman (L-S), Green and Naghdi (G-N)
theory and dual-phase-lag (DPL) model for different sets of values of phase-lags parameters τq,
τθ and the unification parameter δ as follows:

CTE: τθ = τq = 0 and δ = 1

L-S: τθ = 0, τq = τ0 (τ0 is the relaxation time) and δ = 1

G-N: τθ = 0, δ = 0, τq 6= 0, and K = K∗ (the material constant characteristic)
DPL: δ = 1 and 0 < τθ ¬ τq

3. Governing equations

Let us consider small flexural deflections of an elastic beam with dimensions (L×b×h) as shown
in Fig. 1. The beam may be subjected to various thermal and mechanical loads according to the
type of the problem used. Let u, v = 0 and w denote displacement components of a material
point located at (x, y, z) in the present beam in the x, y, and z directions, respectively. The
stress-strain relationships in the beam coordinates are written in the form

{

σx
σz

}

=
E

(1 + ν)(1− 2ν)

[

1− ν ν
ν 1− ν

]{

εx − αθ
εz − αθ

}

σxz =
E

2(1 + ν)
εxz (3.1)

Fig. 1. Schematic diagram of the beam
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The strain-displacement relations are taken in the linear form

εx =
∂u

∂x
εz =

∂w

∂z
εxz =

∂w

∂x
+
∂u

∂z
(3.2)

The governing equations of motion σij,j = ρüi can be presented in an expanded form as

E(1− ν)
(1 + ν)(1− 2ν)

∂2u

∂x2
+

E

2(1 + ν)

∂2u

∂z2
+

E

2(1 + ν)(1− 2ν)
∂2w

∂x∂z
− Eα)

(1 + ν)(1− 2ν)
∂θ

∂x
= ρ
∂2u

∂t2

E

2(1 + ν)(1− 2ν)
∂2u

∂x∂z
+

E

2(1 + ν)

∂2w

∂x2
+

E(1 − ν)
(1 + ν)(1− 2ν)

∂2w

∂z2
− Eα)

(1 + ν)(1− 2ν)
∂θ

∂z
=ρ
∂2w

∂t2

(3.3)

In addition, the thermal conduction equation for the beam without a heat source (Q∗ = 0) is
given as

(

1 + τθ
∂

∂t

)(∂2θ

∂x2
+
∂2θ

∂z2

)

=
(

δ + τq
∂

∂t

)[

η
∂θ

∂t
+
γT0
K

∂

∂t

(∂u

∂x
+
∂w

∂z

)]

(3.4)

where η = ρCe/K. Now, the following dimensionless definitions will be used for the variable
quantities

{x̄, z̄, L̄, h̄, ū, w̄} = ηc{x, z, L, h, u,w} {t̄, τ̄0, τ̄θ, τ̄q} = ηc2{t, τ0, τθ, τq}

θ̄ =
θ

T0
{σ̄x, σ̄z} =

(1 + ν)(1− 2ν)
E

{σx, σz}

σ̄xz =
2(1 + ν)

E
σxz c2 =

E

ρ(1 + ν)(1− 2ν)

(3.5)

Therefore, the heat equation and equations of motion are given by (dropping the prime for
convenience)

(

1 + τθ
∂

∂t

)(∂2θ

∂x2
+
∂2θ

∂z2

)

=
(

δ + τq
∂

∂t

)[∂θ

∂t
+
γ

ηK

∂

∂t

(∂u

∂x
+
∂w

∂z

)]

(1 − ν)∂
2u

∂x2
+
1− 2ν
2

∂2u

∂z2
+
1

2

∂2w

∂x∂z
− αT0

∂θ

∂x
=
∂2u

∂t2

1

2

∂2u

∂x∂z
+
1− 2ν
2

∂2w

∂x2
+ (1− ν)∂

2w

∂z2
− αT0

∂θ

∂z
=
∂2w

∂t2

(3.6)

In addition, the stress components will be

{

σx
σz

}

=

[

1− ν ν
ν 1− ν

]











∂u

∂x
− αT0θ

∂w

∂z
− αT0θ











σxz =
∂w

∂x
+
∂u

∂z
(3.7)

4. Solution of the problem

To obtain the displacements, temperature and stresses of the beam, thermal and mechanical
boundary conditions must be satisfied. Firstly, the following simply-supported conditions are
imposed at the edges of the beam

σx(x, z, t) = 0 w(x, z, t) = 0 θ(x, z, t) = 0 at x = 0, L (4.1)
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The closed form solution of the governing and constitutive equations may be obtained by adap-
ting the supported-normal mode analysis as

{u,w, θ}(x, z, t) = {u∗(z) cos(µx), w∗(z) sin(µx), θ∗(z) sin(µx)}eωt (4.2)

where µ = π/L. The displacement and temperature components given in Eq. (4.2) are satisfying
the above boundary conditions on the edges of the beam. Then, Eqs. (3.6), after some elementary
manipulations, become

( d2

dz2
− c1
)

u∗ + c2
dw∗

dz
= c3θ

∗

( d2

dz2
− c4
)

w∗ + c5
du∗

dz
= c6
dθ∗

dz
( d2

dz2
− c7
)

θ∗ = c8u
∗ + c9

dw∗

dz

(4.3)

where the expressions ck are given by

c1 =
2[ω2 + µ2(1− ν)]

1− 2ν c2 =
µ

1− 2ν c3 =
2µαT0
1− 2ν

c4 =
2ω2 + µ2(1− 2ν)
2(1 − ν) c5 = −

µ

2(1− ν) c6 =
αT0
1− ν

c7 = µ
2 +
(δ + τqω)ω

1 + τθω
c8 = −

(δ + τqω)γµω

(1 + τθω)ηK
c9 =

(δ + τqω)γω

(1 + τθω)ηK

(4.4)

In addition, the stresses are

{σx, σz} = {σ∗x(z), σ∗z (z)}eωt sin(µx) σxz = σ
∗

xz(z)e
ωt cos(µx) (4.5)

They are given by

{

σ∗x
σ∗z

}

=

[

1− ν ν
ν 1− ν

]







− µu∗ − αT0θ∗
dw∗

dz
− αT0θ∗







σ∗xz = µw
∗ +
du∗

dz
(4.6)

Eliminating u∗(z) and w∗(z) in Eqs. (4.3), one obtains

( d6

dz6
−A1

d4

dz4
+A2

d2

dz2
−A3

)

θ∗(z) = 0 (4.7)

where

A1 = c1 + c4 + c7 + c2c5 + c6c9

A2 = c1(c4 + c7 + c6c9)− c3(c8 − c5c9) + c5(c2c7 + c3c9) + c4c7
A3 = c4(c1c7 − c3c8)

(4.8)

Now, Eq. (4.7) may be factorized as

( d2

dz2
− λ21
)( d2

dz2
− λ22
)( d2

dz2
− λ23
)

θ∗(z) = 0 (4.9)

where λ2j (j = 1, 2, 3) denote the roots of the characteristic equation

λ6 −A1λ4 +A2λ2 −A3 = 0 (4.10)
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They are given by

λ1,2 = ∓

√

i 3
√
A0
[

(

1 + i
√
3
)

3
√
A0 − 4A1

]

+ 4
(

1− i
√
3
)

(A21 − 3A2)

2
√
3 6
√
A0

λ3,4 = ∓

√

3
√
A0
[

4A1 −
(

1− i
√
3
)

3
√
A0
]

− 4
(

1 + i
√
3
)

(A21 − 3A2)

2
√
3 6
√
A0

λ5,6 = ∓

√

3
√
A0
(

3
√
A0 + 2A1

)

+ 4(A21 − 3A2)√
6 6
√
A0

(4.11)

where i = −1 and

A0 = 8A
3
1 − 36A1A2 + 108A3 +

√

3A21(4A1A3 −A22)− 6A2(9A1A3 − 2A22) + 81A23 (4.12)

The solution θ∗(z) of Eq. (4.7) is given by

θ∗(z) =
3
∑

j=1

(

B1je
λjz +B2je

−λjz
)

(4.13)

where Bkj (k = 1, 2) are arbitrary unknown complex constants connected with the boundary
conditions. In a similar manner, one gets

{u∗(z), w∗(z)} =
3
∑

j=1

(

{B̂1j , B̌1j}eλjz + {B̂2j , B̌2j}e−λjz
)

(4.14)

where B̂kj and B̌kj are additional unknown constants. Substitution of Eqs. (4.13) and (4.14)
into Eqs. (4.3)1 and (4.3)2 gives

{B̂1j , B̂2j} = Uλj{B1j , B2j} {B̌1j , B̌2j} =Wλj{B1j ,−B2j} (4.15)

in which

Uλj =
c3(λ

2
j − c4)− c2c6λ2j

(λ2j − c1)(λ2j − c4)− c2c5λ2j
Wλj =

λj [c6(λ
2
j − c1)− c3c5]

(λ2j − c1)(λ2j − c4)− c2c5λ2j
(4.16)

Finally, the stress amplitudes are

σ∗x =
3
∑

j=1

σxλj

(

B1je
λjz +B2je

−λjz
)

σ∗z =
3
∑

j=1

σzλj

(

B1je
λjz +B2je

−λjz
)

σ∗xz =
3
∑

j=1

σxzλj

(

B1je
λjz −B2je−λjz

)

(4.17)

where

σxλj = −µ(1− ν)Uλj + νλjWλj − αT0 σzλj = −µνUλj + (1− ν)λjWλj − αT0 (4.18)

Now, the upper surface of the beam is considered to be thermally insulated and subjected
to a mechanical load while the bottom surface is traction free and subjected to a heating source
(Zenkour and Abouelregal, 2016). So, the beam is subjected to the following boundary conditions

θ
(

x,−h
2
, t
)

= θ0 sin(µx)e
ωt ∂θ

∂z

∣

∣

∣

∣

∣

z=+h
2

= 0

σz
(

x,−h
2
, t
)

= σxz
(

x,±h
2
, t
)

= 0 σz
(

x,
h

2
, t
)

= −σ0 sin(µx)eωt
(4.19)
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Substituting Eqs. (4.13), (4.14) and (4.17) into the above boundary conditions, one obtains six
linear equations in the following matrix form

βB = G (4.20)

where G = {θ0, 0, 0,−σ0, 0, 0}T and B = {B11, B12, B13, B21, B22, B23}T is the vector of con-
stants. The elements βlkj (l = 1, 2, . . . , 6) of the marix β are given by

β11j = e
−λj

h
2 β12j = e

λj
h
2 β21j = λjβ

1
2j β22j = −λjβ11j

β31j = β
4
2j = σ

z
λje
−λj

h
2 β32j = β

4
1j = σ

z
λje
λj
h
2

β51j = −β62j = σxzλj e−λj
h
2 β52j = −β61j = −σxzλj eλj

h
2

(4.21)

Solving the system of above equations to get values of the constants Bkj. So, this completes
the solution of the problem. Hence, one can easily obtains expressions for the dimensionless
quantities of temperature θ, displacements u and w, and stresses σ1 = σx, σ3 = σz and σ5 = σxz
in the present beam.

5. Numerical results

The thermoelastic coupling effect is presented here to get the temperature, displacements and
stresses. The material parameters used here are due to physical data of copper at T0 = 293K:
λ∗ = 7.76 · 1010 N/m2, µ∗ = 3.86 · 1010 N/m2, ρ = 8954kg/m3, Ce = 383.1 J/(kgK),
K = 386N/(sK), α = 1.78 · 10−5K−1).
It is to be noted that Young’s modulus E and Poisson’s ratio ν are given in terms of Lamé’s

constants λ∗ and µ∗ by

E =
µ∗(3λ∗ + 2µ∗)

λ∗ + µ∗
ν =

λ∗

2(λ∗ + µ∗)
(5.1)

The length-to-thickness ratio of the beam is fixed at L/h = 5 and the angular frequency
ω = ω0 + iζ. All plots are prepared by using the real values of the dimensionless variables
defined in Eq. (3.5) for a wide range of the beam length and thickness. The computations
are carried out for different values of time and delay time parameters τθ and τq. Once again,
the directions of the beam are given in terms of the length and thickness of the beam, that
is x̄ = x/L and z̄ = z/h (the prime is dropped in the figures for convenience). Figures 2-7
compare the results obtained for temperature, displacements and stresses against the x and z
directions when t = 0.3. The variation of the field quantities versus the time parameter are also
presented in Figs. 8-10. The graphs represent curves predicted by the CTE, L-S and G-N models
of thermoelasticity obtained as special cases of the present general DPL model. The results of
the CTE model (τθ = τq = 0, δ = 1), the L-S model (τθ = 0, τq = 0.05, δ = 1), the G-N model
(τθ = 0, τq = 0.05, δ = 0), and the DPL model (τθ = 0.02 < τq = 0.05, δ = 1) are all presented.
Also, other parameters are fixed at θ0 = 0.5, ω0 = 2, ζ = −1, and two values are considered for
the intensity of the applied load, namely σ0 = 0.5 and σ0 = 1.

Figure 2a shows the variation of the dimensionless temperature θ along the axial direction
at the upper surface z = 0.5 of the beam. The behavior of all models may be the same with
different amplitudes. The absolute maximum temperature occurs at the center of the beam. For
the two load cases, the temperature of the L-S model is positive for σ0 = 0.5 while it changes to
negative for σ0 = 1. The DPL model gives the largest temperatures while L-S model gives the
smallest ones.
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Figure 2b shows the variation of the dimensionless axial displacement u along the axial
direction at the mid-plane z = 0 of the beam. The axial displacement, as expected, vanishes at
the center of the beam for all models. The CTE model gives the smallest axial displacements at
the first edge of the beam and the smallest ones at the second edge. However, the DPL model
gives the largest axial displacements at the first edge of the beam and the smallest ones at the
second edge. The behavior of the L-S model may be unchanged for the two cases of lateral loads.

Fig. 2. Distribution of temperature θ (a) and of axial displacement u (b) in the axial direction for two
load parameters

Figure 3a shows the variation of the transverse displacement w along the axial direction at
the middle surface z = 0. Each model gives different behavior of w along the axial direction of
the beam. The maximum (minimum) deflection occurs at the center of the beam for the L-S
model (CTE model) in the two cases σ0 = 1 and σ0 = 0.5.

Figure 3b shows the variation of the dimensionless axial stress σ1 along the axial direction
at the upper surface z = 0.5 of the beam. The absolute maximum axial stress σ1 occurs at the
center of the beam (x = 0.5). For the first loaded beam (σ0 = 0.5), the axial stress σ1 of the G-N
model only still positive while other models give negative axial stresses along the axial direction
for the two loaded beams.

Figure 4a shows the variation of the dimensionless normal stress σ3 along the axial direction
at the upper surface z = 0.5 of the beam. All of the transverse normal stresses are compressive
due to different models. The DPL model gives the smallest normal stress when σ0 = 1 and the
largest ones when σ0 = 0.5.

Figure 4b shows the variation of the dimensionless transverse shear stress σ5 along the axial
direction at the mid-plane z = 0 of the beam. The shear stresses vanish at the center of the axial
direction according to all models. The shear stresses for σ0 = 0.5 are much smaller than those
for σ0 = 1. The DPL and L-S models give tensile shear stresses at the first edge and compressive
shear stresses at the second edge of the beam for both σ0 = 0.5 and σ0 = 1. Also, the CTE
model gives compressive shear stresses at the first edge and tensile shear stresses at the second
edge of the beam for both σ0 = 0.5 and σ0 = 1. However, the G-N model gives compressive
shear stress at the first edge and tensile shear stresses at the second edge of the beam for σ0 = 1
and vice versa for σ0 = 0.5.
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Fig. 3. Distribution of transverse deflection w (a) and of axial stress σ1 (b) in the axial direction for two
load parameters

Fig. 4. Distribution of transverse normal stress σ3 (a) and of transverse shear stress σ5 in the axial
direction for two load parameters

Figure 5a shows the through-the-thickness variation of the dimensionless temperature θ at
the center x = 0.5 of the beam. The maximum temperature occurs at the upper face of the beam
according to all models due to thermal conditions. The temperature for the CTE model may
change through the beam thickness with a very small magnitude comparing to other models. All
models, as expected, have the same temperature at the bottom surface of the beam. However,
the DPL and L-S models give, respectively, the largest and smallest temperature at the upper
surface of the beam.
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Figure 5b shows the through-the-thickness variation of the axial displacement u at the first
edge x = 0 of the beam under various loads. All models give different behavior of the axial
displacements. The axial displacements for the DPL model are positive, and for the CTE and
G-N models are negative.

Fig. 5. Distribution of temperature θ (a) and of axial displacement u (b) in the thickness direction for
two load parameters

Fig. 6. Distribution of transverse deflection w (a) and of axial stress σ1 (b) in the thickness direction for
two load parameters

Figure 6a shows the through-the-thickness variation of the dimensionless transverse displa-
cement w at the center x = 0.5 of the beam. The deflections due to the DPL and L-S models
may be closed to each other. All models may exhibit different behavior through-the-thickness of
the beam.
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Figure 6b shows the through-the-thickness variation of the dimensionless axial stress σ1 at
the center of the beam x = 0.5. The DPL model gives axial stresses more different than those
of other models. The axial stresses due to the L-S, G-N and CTE are close to each other. The
axial stresses for the DPL when σ0 = 0.5 are greater than those of the DPL model when σ0 = 1.
This is not the same for other models.

Figure 7a shows the through-the-thickness variation of the dimensionless normal stress σ3 at
the center of the beam x = 0.5. All models are very sensitive to the variation of the used load.

Figure 7b shows the through-the-thickness variation of the dimensionless transverse shear
stress σ5 at the first edge x = 0 of the beam. All models are very sensitive to the variation of the
used load, especially in the DPL model. The DPL model gives the smallest compressive stress
near the mid-plane of the beam at z = −0.16 and tensile axial stress at z = −0.16.

Fig. 7. Distribution of transverse normal stress σ3 (a) and of transverse shear stress σ5 in the thickness
direction for two load parameters

Figure 8a shows the variation of the dimensionless temperature θ versus the time parameter
at the center (x = 0.5 and z = 0) of the beam. The behavior of all models may be different.
The sign of temperature for all models (except the G-N model) may be changed from positive
to negative. At t = 1.5, the CTE model gives the smallest temperature and the G-N model gives
the largest temperature for σ0 = 1. Also, temperatures for the G-N (L-S) model are directly
increasing (decreasing) as t increases. Otherwise, the temperatures are no longer increasing and
have their maximum at different values of the time parameter.

Figure 8b shows the variation of the dimensionless axial displacement u versus the time
parameter at the first edge x = 0 of the mid-plane z = 0 of the beam under two different
loads. The axial displacement for the DPL (G-N) model are directly increasing (decreasing) as
t increases for the two cases σ0 = 0.5 and σ0 = 1. The axial displacement for the CTE model
are directly increasing as t increases for σ0 = 0.5 and decreasing as t increases for σ0 = 1.

Figure 9a shows the variation of the transverse displacement w versus the time parameter
at the center (x = 0.5 and z = 0) of the beam. The deflections for the L-S model are directly
increasing as t increases for the two cases σ0 = 0.5 and σ0 = 1. However, the deflections for the
other models are directly decreasing as t increases for the two cases σ0 = 0.5 and σ0 = 1.
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Fig. 8. Variation of temperature θ (a) and of axial displacement u (b) versus the time parameter for two
load parameters

Figure 9b shows the variation of the dimensionless axial stress σ1 versus the time parameter
at the center x = 0.5 of the upper surface z = 0.5 of the beam. The axial stress for the G-N
(DPL) model are directly increasing (decreasing) as t increases for the two cases σ0 = 0.5 and
σ0 = 1. The axial stress for the CTE model are directly decreasing as t increases for σ0 = 0.5.

Fig. 9. Variation of transverse deflection w (a) and of axial stress σ1 (b) versus the time parameter for
two load parameters

Figure 10a shows the variation of the dimensionless normal stress σ3 versus the time para-
meter at the center x = 0.5 of the upper surface z = 0.5 of the beam. Most transverse normal
stresses are no longer decreasing, and finally increase as t increases. For σ0 = 0.5, σ3 in the DPL
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model is directly increasing with an increase in the time parameter while σ3 for the CTE model
is directly decreasing.

Figure 10b shows the variation of the dimensionless transverse shear stress σ5 versus the
time parameter at the first edge of the mid-plane (x = 0, z = 0) of the beam. The shear stresses
for the L-S (G-N) model are increasing (decreasing) as t increases for σ0 = 1 and σ0 = 0.5. For
σ0 = 0.5, σ5 for the DPL (CTE) model is decreasing (increasing) as t increases. For σ0 = 1,
σ5 for the DPL model is no longer increasing and its maximum is at t = 1.1, and then it is
decreasing again while σ5 for the CTE model is decreasing as t increases.

Fig. 10. Variation of transverse normal stress σ3 (a) and of transverse shear stress σ5 (b) versus the
time parameter for two load parameters

For the sake of completeness and comparison, some plots for the filed quantities are displayed
through-the-thickness of the beam using the DPL model only. Here, the upper surface of the
beam is considered to be thermally insulated and subjected to a mechanical load while the bot-
tom surface is subjected to both mechanical load and heating source. So, the beam is subjected
to the following boundary conditions
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In this case, the initial temperature and stresses are fixed as θ0 = 1, σ̄0 = 0.25 and σ̄0 = 0.75.
Figure 11a shows the through-the-thickness variation of the dimensionless temperature θ at the
center x = 0.5 of the beam according to different time parameters. The temperature increases
with an increase in z and t. Figure 11b shows the through-the-thickness variation of the axial
displacement u at the first edge x = 0 of the beam according to different time parameters. The
axial displacement is very sensitive to variation of the time parameter. The magnitude of the
axial displacement wave is increasing as t increases.

Figure 12a shows the through-the-thickness variation of the dimensionless transverse displa-
cement w at the center x = 0.5 of the beam according to different time parameters. Also, the
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Fig. 11. Distribution of temperature θ (a) and of axial displacement u (b) through-the-thickness of the
beam at different time parameters

Fig. 12. Distribution of transverse deflection w (a) and of axial stress σ1 (b) through-the-thickness of
the beam at different time parameters

deflection is very sensitive to variation of the time parameter. The magnitude of the deflection
wave is increasing as t increases. Figures 12b and 13a show the through-the-thickness variation
of the dimensionless axial stress σ1 and the transverse normal stress σ3 at the center x = 0.5
of the beam according to different time parameters. The stresses themselves are decreasing as
t increases while the magnitudes of their waves are increasing. Finally, Figure 13b shows the
through-the-thickness variation of the dimensionless transverse shear stress σ5 at the first edge
x = 0 of the beam according to different time parameters. The shear stress is very sensitive to
variation of the time parameter. The magnitude of the transverse shear stress wave is increasing
as t increases.
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Fig. 13. Distribution of σ3 (a) and σ5 (b) through-the-thickness of the beam at different time parameters

6. Conclusions

The exact presentations of temperature, displacements and stresses in the axial and thickness
directions of a generalized thermoelastic beam are considered in this article. The model of gene-
ralized thermoelasticity with dual-phase-laggings is constructed and other known thermoelastic
models may be considered as special cases. The exact 2D general solution is applied to the
present beam subjected to various heating sources or thermomechanical loads. The compari-
sons are shown along the axial and thickness directions of the beam. The field quantities are
very sensitive to the applied thermal and mechanical loads and variation of the time parameter.
The method used here may be applicable to a wide range of problems in thermodynamics and
thermoelasticity. The numerical results presented here may be considered as more general in
the sense that they include exact analysis of different field quantities. It is concluded from the
graphical results presented here that the effect of dual-phase-lag parameters plays a significant
role on all the physical quantities. Some models may fail to treat the thermoelastic response of
many structures.
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